Focus:

1. To be able to identify the slope and y-intercept of a straight-line graph.
2. To be able to determine a linear equation using slope and y-intercept.
3. To be able to rewrite a linear relation in slope-intercept form
4. To be able to graph equations in slope-intercept form.

Curricular Competencies
A2 I can explore, analyze and apply mathematical ideas
C3 I can use proper math vocabulary and language in discussions

Need to Know:
Slope measures the Steepness of an incline or a decline. It can be calculated using:

$$
m=\frac{\text { rise }}{\text { run }} \text { (graph) } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { (given points) }
$$

The y-intercept is the point where the graph crosses or touches the vertical axis. Its coordinate is
The \mathbf{x}-intercept is the point where the graph crosses or touches the horizontal axis. Its coordinate is $(x, 0)$
When graphing, we usually start at a point
 to determine other points on the graph.

Slope-Intercept Form of a Linear Equation

b: y-intercept (constant)
x: independent variable

v: dependent variable

Example 1:
Write the equation of the linear functions in slope-intercept form given the information.
a. Slope: $\frac{3}{4} ; y$-int: 5
b. Slope: $-\frac{5}{2} ; y$-int: -3
c. Slope: 7; y-int: -7

$$
y=\frac{3}{4} x+5
$$

$y=-\frac{5}{2} x-3$

$$
y=\frac{7 x}{T}-7
$$

Example 2:
Graph the following linear equations and state the coordinates of the $\mathrm{x}-$ and y -intercepts.
a)

$$
\begin{aligned}
& \left.f(x)=\frac{3}{1} x-5\right) \\
& x \text {-intercept: } \frac{\left(\frac{5}{3}, 0\right)}{(x, 0)} \\
& y-\text { intercept: }(0,-5)
\end{aligned}
$$

b) $f(x)=2-\frac{3}{4} x$

Example 3:
Write the equations of the following graphic in slope-intercept form.

$$
\begin{aligned}
& y=m x+b \\
& y=\frac{2}{5} x+3
\end{aligned}
$$

$$
\begin{aligned}
& y=m x+b \\
& y=-\frac{8}{6} x-2 \\
& y=-\frac{4}{3} x-2
\end{aligned}
$$

Example 4:
Determine the equation of the following in slope-intercept form.
a) $E(2,3)$ and $F(1,7)$
b) $J(-6,-2)$ and $K(5,8)$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{7-3}{1-2} \\
& =\frac{-4}{1}
\end{aligned}
$$

$$
\begin{aligned}
& y=m x+b \\
& y=-4 x+b
\end{aligned}
$$

$$
3=-4(2)+b
$$

$$
\begin{aligned}
& y=m x+b \\
& 8=\frac{10}{11}(5)+b
\end{aligned}
$$

$3=-8+b$

$$
8=\frac{50}{40}+b
$$

$+8$

$$
u=b
$$

Example 5: $y=-4 x+11$
Write each equation in the form of $y=m x+b$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8--2}{5--6} \\
& =\frac{10}{11}
\end{aligned}
$$

$$
y=\frac{10}{11} x+\frac{38}{11}
$$

$$
-\frac{-50}{\pi}
$$

$$
\begin{aligned}
& \frac{8}{1}-\frac{50}{10}=b \\
& \frac{88}{17}-\frac{50}{11}=b \quad b=\frac{38}{17}
\end{aligned}
$$

a. $3 x+3 y-4=0$
$3 x+3 y=4$
$-3 x$

$$
y=-1 x+\frac{4}{3}
$$

b. $x-4 y-8=0$

Example 6:

$$
\frac{3 y}{3}=\frac{-3 x+4}{3}
$$

Jim likes to rock climb in his spare time. Recently he climbed down from the top of a cliff to the bottom. At the top, where Jim started, he was 2500 ft above the ground. He moved down the cliff at a speed of $20 \mathrm{ft} / \mathrm{min}$.
a. Write an equation to represent the height, h, in feet that Jim was above the ground after t minutes.

$$
\begin{aligned}
& \text { vet ene bona ate minus. } \\
& h=-20 t+2500
\end{aligned}
$$

b. What does the slope represent?
how last he goes down
c. What was Jim's height above the ground after 40 minutes?

$$
\begin{aligned}
& \text { was sim's height above the ground after } \begin{aligned}
\text { 40 minutes? }
\end{aligned} \\
& h=-20 t+2500 \\
&=-20(40)+2500 \quad h=1700 \mathrm{ft} \\
&=-800+2500
\end{aligned}
$$

d. How many minutes did it take Jim to reach the ground?

$$
\begin{aligned}
& h=-20 t+2500 \\
& 0=-20 t+2500
\end{aligned}
$$

$+20 t+20 t$

$$
\frac{20 t}{20}=\frac{250 \phi}{2 \phi}
$$

$$
t=125 \mathrm{~min}
$$

Assign: P 3491 ace, 3 ace, 4, 5 ace, 6 ace, 7, 8 ace, 9 bd, 10 bd, 13

