 Focus: 1. To be able to sort relations into functions and non-functions. 2. To be able to use notation specifically designed for functions 3. To be able to graph linear functions. 	
Functions:	
Up to now, we have been looking at <u>relation</u> . There is a special type of relation called a	
	v t
Notation	
Standard Notation $f(x)$ replaces function Notation	
y = 2x + 3 What is y when x is 4? y = 2(4) + 3 y = 8 + 3 y = 11	f(x) = 2x + 3 What is f(4)? f(4) = 2(4) + 3 f(4) = 8 + 3 f(4) = 11
Final statement tells you the <u>OUTput</u> only (it does not tell you what <u>input</u> produced this <u>OUTPUT</u>).	Final statement tells you that an <u>input</u> of \underline{H} produces an <u>AUTPUT</u> of <u>11</u> .
When is a Relation a Function?	
To determine if a relation is a function $\underline{\chi}$, you have to look to see if there are multiple $\underline{\chi}$ values	
for a given $\frac{1}{2}$ value. If that is the case, then we <u>don't</u> have a function. For data that is	
given in the form of a graph, we can use the <u>Vertical line test</u> . To do the _	
Line test, draw a vertical line on the graph. If your pencil goes over more than	
point then the relation is not a function.	

* Note: **ALL Functions** are RELATIONS but <u>NOT</u> all RELATIONS are **Functions**!

Example 1: For each pair of relations, decide which relation is a function and which is not a function. Explain your choice.

Example 2: Work with Function Notation:

The function F(C) = 1.8C + 32 is used to convert a temperature in degrees Celsius ($^{\circ}C$) to a temperature in degrees Fahrenheit ($^{\circ}F$).

a) Determine F(25). Explain your answer. F(25) = 1.8(25) + 32= 77

b) Determine C so that F(C) = 100. Explain your answer. C= 31.7 F(l) = 1.8C + 32100=1.8C+37 68=1.8C c) Determine F(86). Explain your answer. F(86)=1.8(86)+32 = 186.8

37.7°C = 100°F

86°C = 186.8°F

37°C = 98.6°F

d) Determine C so that F(C)=98.6. Explain your answer.

98,6=1,8C+32 66.6 = 1.8Cf = 37

e) Another measurement scale for temperature that is used in science is the Kelvin scale. The function K(C) = C + 273.15 can be used to convert from degrees Celsius to Kelvins. Determine K(80) and explain k(c) = 80 + 273.15your answer.

= 353.15

Example 3: If
$$f(x) = 3x - 1$$
, find:
a) f(2) b) f(-6) c) x if f(x)=-4 d)
 $f(x) = 3(2) - 1$ $f(x) = 3(-6) - 1$ $-4 = 3x - 1$

80°C = 353.15°K

f(2m) = 3(2m) - 1

Example 4: Use the graph of f(x) to find:

a) f(-5) = -1b) f(-1) = -3c) f(1) = -4d) f(3) = -2

e) f(6)= 4

Example 5: Skye has a cell phone plan for a monthly fee of \$20 plus 15 cents for each text message to or from a number not on a list of favourites. Skye's monthly bill can be modeled by the relation C = 0.15n + 20, where C is the total charge, in dollars, and n is the number of additional text messages.

a) Write the relation in function notation.

f(n) = 0.15n + 20

b) Make a table of values. Graph the function if Skye sends up to four additional text messages.

