Focus:

1. To be able to sort relations into functions and non-functions.
2. To be able to use notation specifically designed for functions
3. To be able to graph linear functions.

Functions:

Up to now, we have been looking at relation \qquad . There is a special type of relation called a \qquad function. Functions are relations in which each X value (independent) is associated with $E X A C T L Y$ one $y \quad$ value (dependent).
Functions can be written in a special format referred to as \qquad .

Notation

Standard Notation

$y=2 x+3$
What is y when x is 4 ?
$y=2(4)+3$
$y=8+3$
$y=11$
$f(x)=2 x+3$
What is $f(4)$?
$f(4)=2(4)+3$
$f(4)=8+3$
$f(4)=11$

Final statement tells you the
 only (it does not tell you what
 produced this

Final statement tells you that an input of h produces an \square of f II.

When is a Relation a Function?

To determine if a relation is a function, you have to look to see if there are multiple $x_{\text {values }}$ for a given y value. If that is the case, then we don lt have a function. For data that is given in the form of a graph, we can use the \qquad vertical line test on the graph. If your pencil goes over mate than
\qquad point then the relation is not a function.

Which of the following relations are functions?

Note: ALL Functions are RELATIONS but NOT all RELATIONS are Functions!

Example 1: For each pair of relations, decide which relation is a function and which is not a function. Explain your choice.

c) $E\{(1,1),(2,2),(3,3),(4,4)\}$ function
$\mathrm{F}\{(1,1),(1,2),(1,3),(1,4)\}$ relation $\sim x$ rexeats

Example 2: Work with Function Notation:
The function $\mathrm{F}(\mathrm{C})=1.8 \mathrm{C}+32$ is used to convert a temperature in degrees Celsius $\left({ }^{\circ} C\right)$ to a temperature in degrees Fahrenheit (${ }^{\circ} F$).
a) Determine $F(25)$. Explain your answer.

$$
\begin{aligned}
F(25) & =1.8(25)+32 \\
& =77
\end{aligned}
$$

Fahrenheit
Celsius
Kelvin

$$
25^{\circ} \mathrm{C}=77^{\circ} \mathrm{F}
$$

b) Determine C so that $F(C)=100$. Explain your answer.

$$
\begin{aligned}
F(C) & =1.8 \mathrm{C}+32 \\
100 & =1.8 \mathrm{C}+32 \\
68 & =1.8 \mathrm{C}
\end{aligned}
$$

c) Determine $F(86)$. Explain your answer.

$$
\begin{aligned}
F(86) & =1.8(86)+32 \\
& =186.8
\end{aligned}
$$

d) Determine C so that $\mathrm{F}(\mathrm{C})=98.6$. Explain your answer.

$$
\begin{aligned}
98.6 & =1.8 C+32 \\
66.6 & =1.8 C \\
C & =37
\end{aligned}
$$

e) Another measurement scale for temperature that is used in science is the Kelvin scale. The function $K(C)=C+273.15$ can be used to convert from degrees Celsius to Kelvins. Determine $K(80)$ and explain your answer.

$$
\begin{aligned}
K(C) & =80+273.15 \\
& =353.15
\end{aligned}
$$

Example 3: If $f(x)=3 x-1$, find:
a) $f(2)$
b) $f(-6)$
c) x if $f(x)=-4$
d) $f(2 m)$

$$
f(x)=3(\lambda)-1
$$

$$
f(x)=3(-6)-1
$$

$$
-4=3 x-1
$$

$$
f(x)=3(2 m)-1
$$

Example 4: Use the graph of $f(x)$ to find:
a) $f(-5)=-1$
b) $f(-1)=-3$
c) $f(1)=-4$
d) $f(3)=-2$

e) $f(6)=$ 4

Example 5: Skye has a cell phone plan for a monthly fee of $\$ 20$ plus 15 cents for each text message to or from a number not on a list of favourites. Skye's monthly bill can be modeled by the relation $C=$ $0.15 n+20$, where C is the total charge, in dollars, and n is the number of additional text messages.
a) Write the relation in function notation.

$$
f(n)=0.15 n+20
$$

b) Make a table of values. Graph the function if Skye sends up to four additional text messages.

n	C
0	20
1	20.15
2	20.30
3	20.45
4	20.60

c) If Skye's cell phone bill for a certain month is $\$ 22.25$, how many additional text message charges are there?

$2.25=0.15 n$
Assign: P 311: 1, 2, 4, 6-8, 10, 12a, 14, 15, 17, 18

$$
n=15
$$

number of texts

