Focus:

1. To be able to determine if a relation is linear.
2. To be able to represent linear relations in a variety of ways.
3. To be able to explain why data points should or should not be connected
4. To be able to identify the dependent and independent variables in a relation.

Curricular Competencies:

A5: I can model mathematics in situational contexts.

What is a linear relationship?

A relation is an association between \square 2 quantities. A \qquad relationship will have a graph that is a \qquad line. a nen-linear relationship will have a graph that is a \qquad curved line.

To determine if a relation is linear from a table of values, $+y$ values are related. If the values increase or decrease by a constant amount , then the relationship would be \qquad lexepet tor horizontal or vertical lines). Non-linear relations would show values that increase ar decrease by inconsistent amounts.

Examples:

Linear Relation

Equation: $y=4 x+4$

Non-Linear Relation

Equation:

Types of Data
Discrete Data: data values on a graph that are separate
continuous Data: $\frac{\text { data values on a graph can }}{\text { be connected }}$

Independent and Dependent Variables

In relations that contain \qquad 2 variables, one variable is considered to be \qquad independent variable is the variable for which values are selected. The \qquad dependent variable values rely on the values of the \qquad independent variable.
In graph form, the \qquad independent
\qquad dependent . The \qquad independent while the other is considered to be
\qquad

\qquad
 dependent variables are on the _y axis.
In table form, the independent
side while the variables are on the left top or top
dement
\qquad dependent variables are on the _o axis.
In table form, the independent
side while the variables are on the left top or top
\qquad
 dependent variables are on the _o axis.
In table form, the independent
side while the variables are on the left top or top
\qquad
 variables are on the \qquad x axis while the \qquad side.

Examples
For each of the following groups of data, determine whether or not they represent a linear relation.
a) The set of points: $(-7,10),(-4,8),(-1,6),(2,4),(5,2)$

$$
\begin{aligned}
y= & \frac{-2}{3} x+\frac{16}{3} \\
& \frac{-2}{3} x-7 \\
& \frac{14}{3}=10 \\
& \frac{14}{3}+\frac{16}{3}=\frac{30}{3}
\end{aligned}
$$

b) The graph below shows the radioactive decay of an isotope in a sample of rock.

c) The relation described by the following equation: $g+4=0.7 \mathrm{~h}$

$$
\begin{aligned}
& -4-4 \\
& g=0,7 h-4 \leftarrow \text { linear }
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& \hline 0 \\
& \hline 0 \\
& 10 \\
& 10
\end{aligned}
$$

d) Allie has collected some data on students' height as they age. Which category would be the dependent variable? Which would be the independent variable?

not inane

There is a linear relationship between the number of caribou, n, in a herd and the number of caribou legs, L. Which representations model this relation?

$$
\begin{aligned}
& \sqrt{A} L=4 n \\
& \text { V }(0,0),(3,12),(8,32),(15,60),(50,200) \\
& \text { C } L=n+4 \\
& \text { D }
\end{aligned}
$$

assignment: p 287 1-6, 8, 12

