\qquad
\qquad
6.0 Remember This?

Rates and Proportional Reasoning
A unit rate is optional Reasons for 1 thing
how much
Example: $156.9^{\mathrm{L}} / \mathrm{L} \quad 60 \mathrm{kn} / \mathrm{h}$ paint/game pay $/ \mathrm{hr}$

To set up a proportion make sure that units match!

Example: A car needs 9.4 L of gasoline to go 120 km . How much will it need to travel 730 km ?

$$
\begin{aligned}
\frac{9.4 \mathrm{~L}}{120 \mathrm{~km}} & =\frac{x}{730 \mathrm{~lm}} \\
x & =57.18 \mathrm{~L}
\end{aligned}
$$

Linear Relationships
A distance time graph ...

1. At what rate is the distance increasing over time? Explain.

shoes $\$$

s	m
1	52
2	543
3	563
4	583
5	60^{3}

Taylor works at a shoe store. She makes $\$ 50$ per day plus $\$ 2$ for every pair of shoes she sells.
a. Create a table of values to show how much she would earn for selling up to five pairs of shoes in one day.
b. Develop an equation to model this situation.

$$
m=2 s+50
$$

c. How much money will Taylor make in a day if she sells 23 pairs of shoes?

$$
\begin{aligned}
m & =2(23)+50 \\
& =\$ 96
\end{aligned}
$$

The cost of renting a snowboard can be calculated using the equation $C=40+20 d$, where C is the rental cost, in dollars, and d is the number of rental days.
a. Graph the linear relation for the first five days. Cost of Snowboard Rental

b. From the graph, what is the approximate cost of renting the snowboard for one day? Seven days?

$$
\begin{aligned}
& 1 \text { day }-\$ 60 \\
& 7 \text { days }-\$ 180
\end{aligned}
$$

c. If buying a used snowboard costs $\$ 300$, use your graph to approximate how many days you could rent a board before it becomes cheaper to buy it.

$$
\begin{aligned}
C=40+20 d & \frac{260}{20}=\frac{20 d}{20} \\
300 & =40+20 d
\end{aligned} \quad d=13 d \operatorname{dag} 5
$$

Solve and Check:

$$
\begin{aligned}
\text { a. } \begin{array}{rl}
\frac{x}{1.3}-5.8 & =-2.4 \\
5.8 & 5.8 \\
1.3\left(\frac{x}{1.3}\right) & =(3.4) 1.3 \\
x & =4.42
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\text { b. }\left(\frac{3}{42}\right)=\left(\frac{x+2}{2}\right)^{2} \\
\frac{3}{2}=x+2 \\
\frac{3}{-2}-\frac{2}{1}=x \\
\frac{3}{2}-\frac{4}{2}=x
\end{array}
$$

c. $\begin{aligned}\left(\frac{1}{3} x+\frac{1}{2}\right. & \left.=\frac{5}{6} x\right)^{6} \\ 2 x+3 & =5 x \\ -2 x & -2 x \\ \frac{3}{3} & =\frac{-3 x}{3} \\ 1 & =x\end{aligned}$

