Focus:

1. To be able to factor and expand a difference of squares.
2. To be able to factor and expand perfect squares.

Curricular Competencies:
C2: I can represent math concretely, pictorially and symbolically

Perfect Square Trinomial

Write the following algebra tile models as a multiplication of binomials using the templates below.

$$
\text { or }(x+3)^{2}
$$

$$
x^{2}+6 x+9=1 x+3 x(x+3
$$

$$
4 x^{2}-8 x+4=(2 x-2)(2 x-2)
$$

The above examples are two of the many \qquad trinomial that you will encounter. In general, perfect square trinomials:

Can be drawn as a square
Can be remembered as two generic formulae:
$(a x+b)^{2}$ or $(a x+b)(a x+b)$ or $(a x-b)^{2}$ or $\left.(a x-b)(a x-b)\right)$ $a^{2} x^{2}+2 a b x+b^{2}$ area model
$* a, b$ are integers
$a^{2} x^{2}-2 a b x+b^{2}$ $4 x^{2}-8 x+4$

Difference of Squares Trinomials

Write the following algebra tile models as a multiplication of binomials using the templates below.

$$
x^{2}-4=(x-2)(x+2) \quad 4 x^{2}-16=(2 x-4)(2 x+4)
$$

The above examples are two of the many \qquad difference of squares trinomis that oo will encounter. In general, difference of square trinomials:

Can be drawn as an area model which is a \qquad difference of two squares
Can be remembered as $(a x+b)(a x-b)$

Examples

Factor the following fully. Identify the type of special polynomials.
a) $121 x^{2}-22 x+1$
perfect B $(11 x-1)(11 x-1)$
c) $4 x^{2}+4 x y+y^{2}$ perfect B
$(2 x+l y)(2 x+l y)$
b) $4 x^{2}-9$
diff \square
$(2 x+3)(2 x-3)$
d) $16 a^{2}-25$
diff $\begin{aligned} & \text { B } \\ & (4 a-5)(4 a+5)\end{aligned}$
e) $25 v^{2}-70 v w+49 w^{2}$ perfect \square

$$
(5 v-7 w)(5 v-7 w)
$$

$$
\begin{aligned}
& \text { f) } 49 x^{-}-36 y^{2} \\
& \text { diff } \square \\
& \left(7 x^{2}+6 y\right)\left(7 x^{2}-6 y\right)
\end{aligned}
$$

Expand the following binomial products. Identify the type of special polynomials.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { a) }(2 x+7)^{2}(2 x+7)(2 x+7) & \text { Perfect } \square
\end{array} & \begin{array}{l}
\left(a^{2}-5\right)^{2} \\
4 x^{2}+14 x+14 x+49
\end{array} \\
\begin{array}{ll}
2 \\
4 x^{2}+28 x+49 & \left.a^{2}-5\right)
\end{array} & a^{4}-5 a^{2}-5 a^{2}+25 \\
\text { c). }(4-k)(4+k) & a^{4}-10 a^{2}+25 \\
16+4 k-4 k-k^{2} & \text { d) }\left(3 m^{2}-4 n\right)\left(3 m^{2}+4 n\right) \\
16-k^{2} \quad & 9 m^{4}+12 m^{2} n-12 m^{2} n-16 n^{2} \\
\text { diff of } \square & 9 m^{4}-16 n^{2} \quad \text { diff of } \square
\end{array}
$$

