Focus:

1. To be able to determine prime factors, greatest common factors and least common multiples of whole numbers.
2. To be able to write polynomials in factored form.

Curricular Competencies:
A2: I can explore, analyze and apply mathematical ideas

Terminology

The opposite of the distributive property is converts polynomials into their component factors. This is often important for doing more complex mathematical operations.
To factor something means to express as a product
when factoring a polynomial, always look for the greatest common fader (GCE)first. GCF

List the Greatest Common Factors ...
$16 x^{2} y$ and $24 x^{2} y^{3}$
$8 x^{2} y$
$5 m^{2} n$ and $15 m n^{2}$
$5 m n$
$48 a b^{3} c$ and $36 a^{2} b^{2} c^{2}$
$12 a b^{2} c$

GCF and Polynomials

We can do this for polynomials as well:
To do this, find GCF

$$
\frac{n}{n} \quad n^{0}=1
$$

divide GCF from all terms
Write each in factored form.

$10 y-20$ $10(y-2)$ deed $10 y-20$	$35 a+10 a^{2}$ $5 a(7+2 a)$	$24 m^{2} n+16 m n^{2}$ $8 m n(3 m+2 n)$ $\left.-28 x^{2} y-35 x\right)^{2}$ $-7 x y(4 x+5 y)$
	$3\left(x^{2}+4 x-2\right)$	$x^{3 x^{2}+12 x-6}(x-1)$

