Focus:

1. To be able to determine the square root of a perfect square.

2. To be able to determine the cube root of a perfect cube.

3. To be able to solve problems involving square roots or cube roots.

_Curricular Competencies:

A2: I can explore, analyze and apply mathematical ideas

Square Root Perfect Prime Perfect **Prime Factorization** Cube Root Squares Factorization Cubes $\sqrt{1} = 1$ $\sqrt[3]{1} = 1$ 1 1 $\sqrt[3]{8} = 2$ 2 x 2 $\sqrt{4} = 2$ $2 \times 2 \times 2$ 4 8 $\sqrt{9} = 3$ 3 x 3 x 3 $\sqrt[3]{27} = 3$ 9 (3×3) 27 2 x 2 x 2 x 2 $\sqrt{16} = 4$ 2 x 2 x 2 x 2 x 2 x 2 x 2 $\sqrt[3]{64} = 4$ 16 64 $\sqrt[3]{125} = 5$ 25 5 x 5 $\sqrt{25} = 5$ 5 x 5 x 5 125 2 x 2 x 3 x 3 2 x 2 x 2 x 3 x 3 x 3 x 3 $\sqrt[3]{216} = 6$ $\sqrt{36} = 6$ 36 216 . . $\sqrt{100} = 10$ $\sqrt[3]{1000} = 10$ 2 x 2 x 5 x 5 2 x 2 x 2 x 5 x 5 x 5 100 1000 2 x 2 X 2 x 2 x $\sqrt{144} = 12$ 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3 $\sqrt[3]{1728} = 12$ 144 1728 (3 x 3 x C X Thus $\sqrt{49} = 7$ because 7×7 3×3 And $\sqrt[3]{729} = 9$ because $9 \times 9 \times 9$ Zarayos A perfect square is the product of two equal factors A perfect cube is the product of <u>3</u> equal <u>factors</u>

What patterns can you see?

How can prime factorization be used to determine if a number is a perfect square?

check for groups of two

How can prime factorization be used to determine if a number is a perfect cube? Check for groups of three

Which of the following numbers is a perfect square? A perfect cube? Neither? Justify using prime factorization and a calculator.

Number	Prime Factorization	Calculator	Perfect Square	Perfect Cube
512	$\begin{array}{llllllllllllllllllllllllllllllllllll$	512 22.63 3512 = 8	NO.	yes
300	2·150 2·3·50 2·2·3·25 2·2·3·5·5		no	no
729	9.9.9 3.3.3.3.3.3 		yes	yes

Examples

Determine the answers to the following. Use a calculator only when appropriate.

-4 ²	- 16	-4 ³	- 64	$(-3)^2$	9
(-5) ³	-125	$\left(\frac{3}{5}\right)^3 \underbrace{3^3}_{5^3}$	27 125	$\frac{27}{\sqrt{81}}$	$\frac{27}{9} = 3$
$\sqrt{25x^2}$	5x	$\sqrt{1625}$	≈ 40.સ	$\sqrt{\frac{36}{25}}$	SIN
$\sqrt[3]{\frac{27}{8}}$	3/2	∛27125	≈30.05	$\sqrt[3]{125x^3}$	5x
$\frac{6}{\sqrt[3]{8}}$	62=3	$\sqrt[3]{27d^3}$	3d	∛27000	30

A floor mat for gymnastics is a square with an area of 196 m^2 . What is its side length?

$$\sqrt{196} = 14 \text{ m}$$

The volume of a cube is 512 in^3 . What is the surface area of the cube?

$$3\sqrt{512} = 8in$$
 $5A = 65^{2}$
= $6(8)^{2}$
= $2304in^{2}$
= $384in^{2}$

The surface area of a sugar cube is 13.5 cm². What is the volume of the cube?

$$SA = 65^{2}$$

 $13.5 = 65^{2}$
 $6^{2} - 6^{2}$
 $5^{2} \cdot 2.25 = 5^{2} \cdot 5^{2}$
 $S = 1.5 \text{ cm}$

$$V = S^{3}$$

= 1.5³
= 3.375 cm³
 $\approx 3.38 \text{ cm}^{3}$