## Focus:

1. To be able to determine the square root of a perfect square.
2. To be able to determine the cube root of a perfect cube.
3. To be able to solve problems involving square roots or cube roots.

Curricular Competencies:


## What patterns can you see?



Thus $\sqrt{49}=$ $\qquad$ because $7 \times 7$
And ${ }^{8} 729=9$ because $9 \times 9 \times 9$


A perfect square is the product of two $\qquad$ equal factors
A perfect cube is the product of $\qquad$ equal $\qquad$

How can prime factorization be used to determine if a number is a perfect square?
check for groups of two

How can prime factorization be used to determine if a number is a perfect cube?
check for groups of three

Can numbers be perfect sudras and perfect cubes? $\sqrt[3]{(64)}=8$
yes. $\quad 64 \sqrt{64}=8 \quad 8 \quad 8^{2} \quad 4^{3}$
Perfect Squares and Cubes
Which of the following numbers is a perfect square? A perfect cube? Neither? Justify using prime factorization and a calculator.


Examples

Determine the answers to the following. Use a calculator only when appropriate.

| $-4^{2}$ | -16 | $-4^{3}$ | -64 | $(-3)^{2}$ | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(-5)^{3}$ | -125 | $\left(\frac{3}{5}\right)^{3} \frac{3^{3}}{5^{3}}$ | $\frac{27}{125}$ | $\frac{27}{\sqrt{81}}$ | $\frac{27}{9}=3$ |
| $\sqrt{25 x^{2}}$ | $5 x$ | $\sqrt{1625}$ | $\approx 40.31$ | $\sqrt{\frac{36}{25}}$ | $\frac{6}{5}$ |
| $\sqrt[3]{\frac{27}{8}}$ | $\frac{3}{2}$ | $\sqrt[3]{27125}$ | $\approx 30.05$ | $\sqrt[3]{125 x^{3}}$ | $5 x$ |
| $\frac{6}{\sqrt[3]{8}}$ | $\frac{6}{2}=3$ | $\sqrt[3]{27 d^{3}}$ | $3 d$ | $\sqrt[3]{27000}$ | 30 |

A floor mat for gymnastics is a square with an area of $196 \mathrm{~m}^{2}$. What is its side length?

$$
\sqrt{196}=14 \mathrm{~m}
$$



The volume of a cube is $512 \mathrm{in}^{3}$. What is the surface area of the cube?

$$
\begin{aligned}
\sqrt[3]{512}=8 \text { in } \quad s A & =6 s^{2} \\
& =6(8)^{2} \\
& =2304 \mathrm{in}^{2} \\
& =384 \mathrm{in}^{2}
\end{aligned}
$$



The surface area of a sugar cube is $13.5 \mathrm{~cm}^{2}$. What is the volume of the cube?

$$
\begin{array}{rlrl}
\text { Hume of the cube? } & =6 \mathrm{~s}^{2} & V & =s^{3} \\
\frac{13.5}{6}=\frac{6 \mathrm{~s}^{2}}{6} & & =1.5^{3} \\
\sqrt{2.25} & =\sqrt{\mathrm{s}^{2}} & & =3.375 \mathrm{~cm}^{3} \\
S & =1.5 \mathrm{~cm} & & =3.38 \mathrm{~cm}^{3}
\end{array}
$$



